
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2011-09

A comparative analysis of the Snort and
Suricata intrusion-detection systems

Albin, Eugene
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5480

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A COMPARATIVE ANALYSIS OF THE SNORT AND

SURICATA INTRUSION-DETECTION SYSTEMS

by

Eugene Albin

September 2011

 Thesis Advisor: Neil Rowe

 Second Reader: Rex Buddenberg

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

September 2011

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE
A Comparative Analysis of the Snort and Suricata Intrusion-Detection Systems

5. FUNDING NUMBERS

6. AUTHOR(S) Eugene Albin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. Government. IRB Protocol number NA.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Our research focuses on comparing the performance of two open-source intrusion-detection systems, Snort and

Suricata, for detecting malicious activity on computer networks. Snort, the de-facto industry standard open-source

solution, is a mature product that has been available for over a decade. Suricata, released two years ago, offers a new

approach to signature-based intrusion detection and takes advantage of current technology such as process multi-

threading to improve processing speed. We ran each product on a multi-core computer and evaluated several hours of

network traffic on the NPS backbone. We evaluated the speed, memory requirements, and accuracy of the detection

engines in a variety of experiments. We conclude that Suricata will be able to handle larger volumes of traffic than

Snort with similar accuracy, and thus recommend it for future needs at NPS since the Snort installation is approaching

its bandwidth limits.

14. SUBJECT TERMS
Intrusion-detection System (IDS), Snort, Suricata, Information Technology, Information Assurance,

Network-Security Monitoring (NSM), Intrusion Prevention System (IPS)

15. NUMBER OF

PAGES

68

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE
Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT
Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A COMPARATIVE ANALYSIS OF THE SNORT AND SURICATA INTRUSION-

DETECTION SYSTEMS

Eugene Albin

Lieutenant Commander, United States Navy

B.M., Southwestern University, 1995

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

September 2011

Author: Eugene Albin

Approved by: Neil Rowe, PhD

Thesis Advisor

Rex Buddenberg

Second Reader

Dan Boger, PhD

Chair, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Our research focuses on comparing the performance of two open-source intrusion-

detection systems, Snort and Suricata, for detecting malicious activity on computer

networks. Snort, the de-facto industry standard open-source solution, is a mature product

that has been available for over a decade. Suricata, released two years ago, offers a new

approach to signature-based intrusion detection and takes advantage of current

technology such as process multi-threading to improve processing speed. We ran each

product on a multi-core computer and evaluated several hours of network traffic on the

NPS backbone. We evaluated the speed, memory requirements, and accuracy of the

detection engines in a variety of experiments. We conclude that Suricata will be able to

handle larger volumes of traffic than Snort with similar accuracy, and thus recommend it

for future needs at NPS since the Snort installation is approaching its bandwidth limits.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. PREVIOUS WORK ...7

III. DESCRIPTION OF METHODOLOGY AND EXPERIMENTS13

A. EXPERIMENTAL SETUP ...14

B. EXPERIMENTS ..16

IV. DISCUSSION OF RESULTS ...21

A. EXPERIMENT ONE ...22

B. EXPERIMENT TWO ..27

C. EXPERIMENT THREE ...30

V. CONCLUSION ..37

A. DISCUSSION ...37

B. RECOMMENDATION ...38

C. FUTURE RESEARCH ..39

APPENDIX A ...41

ANNEX 1 TABLE OF COMBINED SURICATA AND SNORT ALERTS

DURING TESTING...41

ANNEX 2 EXAMPLE PYTBULL REPORTS FOR SURICATA AND

SNORT ..42

APPENDIX B ...45

ANNEX 1 EMERGING THREATS (ET) AND VULNERABILITY

RESEARCH TEAM (VRT) RULE CATEGORIES USED IN

EXPERIMENTS. ...45

LIST OF REFERENCES ..47

INITIAL DISTRIBUTION LIST ...49

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Suricata multi-thread design (From OISF, 2011c) ..9

Figure 2. Suricata multi-CPU affinity (From OISF, 2011c) ...9

Figure 3. Experiment One setup ..17

Figure 4. Experiment Three logical network diagram ..18

Figure 5. Suricata CPU Use ..22

Figure 6. Snort CPU Use ...23

Figure 7. Suricata RAM Use ...23

Figure 8. Snort RAM Use..24

Figure 9. Suricata Packet Rate ..25

Figure 10. Snort Packet Rate ...25

Figure 11. Suricata and Snort Combined Alert Frequency ...26

Figure 12. Suricata runmode performance for 48 CPUs ...28

Figure 13. Suricata runmode performance for 4 CPUs ...29

Figure 14. Suricata detect thread ratio performance 4-CPU ...29

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Summary of Snort Alerts ...31

Table 2. Summary of Suricata Alerts ...31

Table 3. Snort and Suricata Recall and Precision ..32

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CPU Central Processing Unit

CVE Common Vulnerabilities and Exposures

DHS Department of Homeland Security

DoS Denial of Service

ERN Education Research Network

ET Emerging Threats

FTP File Transfer Protocol

HIDS Host-based Intrusion-Detection System

HTTP Hyper Text-Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion-Detection System

IP Internet Protocol

IPS Intrusion-Prevention System

LFI Local File Inclusion

MSSQL MicroSoft Structured Query Language

NSM Network-Security Monitoring

NIC Network Interface Card

NIDS Network-based Intrusion-Detection System

NPS Naval Postgraduate School

OISF Open Information Security Foundation

PCAP Packet CAPture

PCRE PERL Compatible Regular Expression

PDF Portable Document Format

 xiv

RAM Random Access Memory

RPM Resource Package Manager

SID Snort IDentification

SPAWAR Space and Naval Warfare Command

SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

URI Uniform Resource Identifier

VM Virtual Machine

VNC Virtual Network Computing

VRT Vulnerability Research Team

VTY Virtual Teletype Terminal

YAML YAML Ain’t Markup Language

 xv

 xvi

ACKNOWLEDGMENTS

This project would not have been possible without the guidance and support of

my thesis advisors, Dr. Neil Rowe and Mr. Rex Buddenberg, without whom this paper

would have been a jumbled mess of ideas. I’d also like to thank Chris Gaucher, Director

of Cyber-Security and Privacy at NPS, and his team including Jason Cullum, Simon

McLaren, for granting me permission to conduct this research on the NPS network and

secondly for all of the ideas and discussion about intrusion detection here at NPS.

Thanks also to Lonna Sherwin and her server management team including Eldor Magat

for providing access to the hardware needed to conduct these experiments. Thanks for

answering all of my questions about server virtualization and configuration. I’d also like

to thank the many participants in the OISF user’s mailing group, especially Peter Manev,

Will Metcalf, Dave Remien, and Victor Julien for putting up with my endless barrage of

questions and providing me with the help that I needed to understand the nuances of

Suricata.

Most importantly I want to thank my amazing wife, Elizabeth, for her endless

patience and understanding as I spent countless days and nights away from our family.

Your love and support gave me the strength to make it to the end. Finally, thanks go to

my two boys, Elliott and Sean, the pride of my life, who have selflessly given up their

summer with Papa so I could complete my thesis. I love you both.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

In spite of the many developments in network security over the past decade, the

Internet remains a hostile environment for our networked computer systems. According

to the Symantec Internet Security Threat Report for 2010, “The volume and

sophistication of malicious activity increased significantly in 2010” (Fossl, 2011).

Attacks by worms such as Stuxnet and exploits in commonly used programs such as

Adobe Acrobat are recent examples of the caliber and frequency of malicious activity

that is seen being crafted with today’s technology. It is no longer safe to ignore the

security threats that we face, and we continue to become more and more dependent upon

network connectivity and the Internet.

The threats are not only to computers and hardware that we connect to the

Internet, but to the data and information that resides within that infrastructure. More and

more we as a society are growing and developing our digital presence. Beyond just our

email, shopping habits, and bank account information, the data that is collected about us,

that defines us, exists in this hostile network of systems; and without a commensurate

increase in technologies to protect that data we risk compromise, theft, exploitation, and

abuse of the data that defines our digital selves, be it our individual, personal identity or

our corporate digital self, will cause real and significant damage in the real world.

The Naval Postgraduate School is one such institution where information is

processed on a large scale, stored, and transmitted over a diverse computer network.

Information security is crucial to protect and sustain the development of critical research.

Like many other government organizations the Naval Postgraduate School is constantly

being probed and attacked in an attempt to penetrate the defenses and obtain the

information within the NPS information domain. To defend against that, NPS has built a

robust defense architecture that monitors and guards the critical information against these

intrusion attempts. However this threat is not stagnant, and will continue to grow,

change, and adapt to the current network security technologies.

 2

Consequently, we must continue to advance the development of new security

technologies to defend against the rising tide of malicious activity penetrating those

networks. Best practices in network security dictate that “defense-in-depth” (the strategy

of establishing multiple layers of defense around critical infrastructure to protect the data)

is an effective posture in defending against these attacks. One critical aspect of network-

security monitoring is the incorporation of intrusion-detection and intrusion-prevention

technologies within our defense-in-depth strategy (Kuipers & Fabro, 2006; Kumar &

Panda, 2011). An intrusion-detection system (IDS) monitors and logs the traffic that is

traversing a network for signs of malicious or unwanted activity, and generates an alert

upon discovery of a suspicious event.

There are two types of intrusion-detection systems, host-based and network-

based. A host based intrusion-detection system is a tool that resides on a network node,

or a computer that is connected to the network. Similar to a virus or malware scanner, it

scans traffic destined for that particular host for signs of malicious activity, then

generates alarms for those events. At an enterprise scale, these host-based systems are

widely deployed to send reports back to a centralized monitoring node where aggregation

and study of the collective threat picture can occur. A networked-based intrusion-

detection system is a device connected to the network in a manner similar to a network-

protocol analyzer, or “sniffer” as it is commonly called. But it goes one step beyond

simple packet capture and presentation to examine the contents of the packet data for

signs of malicious activity. A network-based intrusion-detection system monitors all of

the network traffic and upon sensing an intrusion, sends an alarm to a monitoring console

for further action. Multiple network-based intrusion detection systems can be deployed

throughout an enterprise at critical network junctures: the boundary link(s) to the Internet,

the trunk to the VIP computer systems, the ingress and egress points for the server farm

or data center, or the demarcation point of the enterprise wireless infrastructure.

Intrusion detection as part of network-security monitoring involves reviewing and

examining large amounts network traffic data. There are a number of ways to do

network-security monitoring using intrusion-detection engines. One is to monitor

network traffic in real time using a variety of tools that examine and interpret the traffic,

 3

and output alerts as malicious traffic crosses the sensor on the network. This real-time

monitoring allows for an immediate response to any alarms generated by the intrusion

detection engine. The processing speed for real-time monitoring is bounded by the

maximum speed of the network interface card. Should the engine reside on a system with

a low-capacity network interface card, the card may quickly become overloaded with

network traffic and begin to drop packets. The more packets that are dropped, the greater

the chances of a malicious payload getting through the intrusion-detection layer of

defense. Therefore, the system running the detection engine should be capable of

processing traffic at a speed equal or greater to the maximum capacity of the network.

Another method is to use the intrusion-detection system engine for playback or

non-real-time analysis of archived traffic. This approach is more often applied to post-

incident network forensic analysis. Where real-time monitoring of network traffic is

bounded by the speed of the network interface card, forensic analysis of archived network

traffic is limited by the computing hardware and the detection engine software. It is

during forensic analysis that we will see the greatest performance increase by increasing

the computer’s processing ability in CPU, memory, and disk I/O speeds

There are presently two main categories of intrusion-detection, anomaly-based

and signature-based. Anomaly-based detection examines the network traffic from a

holistic perspective, looking for traffic that falls outside of what is considered normal

activity. Any such events are analyzed and if necessary, further investigation and

subsequent action is taken to mitigate the anomaly (García-Teodoro, Díaz-Verdejo,

Maciá-Fernández, & Vázquez, 2009). Anomaly detection is good for discovering new,

previously unknown attacks in a relatively small network environment. Signature-based

intrusion-detection attempts to match network traffic data to a preloaded signature

database. Typically, these signature rules are generated from previously discovered

malicious traffic, but they can be custom crafted to match any sort of traffic flowing

through the network. Upon matching a signature rule the detection engine generates an

alert which is subsequently sent to the analyst for further action.

An example of a signature-based detection would be when the intrusion-detection

system generates an alert from an attempt by an attacker to create a reverse command

 4

shell to an internal server. In this case, the attacker is attempting to gain unauthorized

access to a protected system within the network perimeter by attempting to pass to the

server a series of commands which would initiate a reverse connection to the attacker’s

computer. This type of attack could be detected by a signature-based system through the

commands that the attacker issues. One common command that a system scans for is

“c:/windows/cmd.exe.” An anomaly-based system would instead notice a command shell

request being generated from outside of the protected server enclave. Since this is not

considered normal activity for the traffic that flows to and from the Internet, this would

then be flagged as an alert. Other examples of behavior that would trigger an anomaly-

based alert might include after-hours access by a user who normally works during the

day, indicating possible unauthorized access; significant change in data traffic from one

area of the network to another, indicating possible data exfiltration; or an increase in data

communications between a growing number of workstations, indicating a possible worm

infestation.

In recent years, with the increase in complexity and frequency of Internet attacks,

intrusion detection has become significantly more important to a wider audience.

Numerous companies and organizations have been working to develop the technology

and have produced several products, both open source and proprietary. One of the most

popular and widespread open-source signature-based network intrusion-detection engines

is Snort, maintained by SourcFire (www.sourcefire.com). Originally developed to

monitor the application layer of network data packets, Snort was developed in 1998 by

Martin Roesch and is based on the Libpcap library (Roesch, 2005). The current modular

design of Snort in today’s version was settled on in 1999 with Snort 1.5. This modular

design allows developers to build and add-on additional features without the need to

rewrite the core detection engine. Snort has become the de-facto industry standard for

signature-based network intrusion-detection engines. An overview of the specific

capabilities of the Snort intrusion-detection system is in (Tenhunen, 2008).

Almost a decade later, in 2009, the Open Information Security Foundation (OISF)

released a new signature-based network intrusion-detection engine called Suricata.

Suricata is also an open-source signature-based network intrusion-detection engine

 5

envisioned to be the next generation intrusion-detection/prevention system engine

(Jonkman, 2009). Significant funding for the project comes from the Department of

Homeland Security (DHS) Directorate for Science and Technology (S&T) Homeland

Open Security Technology (HOST) program and the Navy’s Space and Naval Warfare

Command (SPAWAR). As the OISF title implies, the development framework for

Suricata is open-source and is licensed by the GNU Public License v2 (OISF, 2011a).

One advance that Suricata incorporates is a new Hyper-Text Transfer Protocol (HTTP)

normalizer. Called the HTP library and developed independently for the Suricata project

by Ivan Ristic, it is an advanced HTTP parser developed for Suricata and the OISF that is

designed to be “security-aware,” meaning that it is capable of examining HTTP traffic for

the attack strategies and evasion techniques used by attackers to circumvent an intrusion-

detection system (Ristic, 2009).

Another advance in the Suricata engine is the ability to employ native multi-

threaded operations, something more necessary as network bandwidth increases (Nielsen,

2010). The typical Snort installation can process network traffic at a rate of 100-200

megabits per second before reaching the processing limit of a single CPU and dropping

packets to compensate (Lococo, 2011). That is because the current Snort engine is a

single-threaded multi-stage design (Roesch, 2010) and does not perform as well as

Suricata in a multi-threaded environment (Day & Burns, 2011). For Snort to take

advantage of the multiple processors, one would have to start a new instance of Snort for

each desired CPU, which could be a management challenge. Suricata is designed from

the outset to take advantage of operating with multiple CPUs (OISF, 2011a). This

required development of original detection algorithms from the ground up. Nonetheless,

the developers intend to support the same rule language used in the Snort rules; and when

the Suricata engine is more stable the OISF will make available Suricata’s extended

features (OISF, 2011a).

In Chapter II, we will review the challenges of intrusion-detection and look at

how Suricata and Snort attempt to address these challenges. We will examine other

works in the field of network security that compare the differences between Suricata and

Snort.

 6

In Chapter III, we will introduce and describe our testing methodology for our

comparison of Suricata and Snort. We will discuss the setup of our experiments and the

steps involved in building the testbed. We will also introduce the supporting applications

required to complete our experiments.

In Chapters IV and V, we will present our results and conclusions respectively.

We will then discuss further research that can be done to compare the two engines, and

provide a recommendation for implementation of the Suricata intrusion-detection system.

 7

II. PREVIOUS WORK

Intrusion detection is difficult to accomplish perfectly. With the volume of

network traffic rapidly increasing and the number and complexity of network attacks

increasing just as quickly, it becomes increasingly difficult for a signature-based

intrusion-detection system to keep up with the current threats (Weber, 2001). When a

system fails to generate an alarm, the result could be the compromise of critical data

within the network infrastructure. Worse, if the system generates too many false alarms,

the operators monitoring the system may become desensitized to the alerts and may

ignore a genuine alert in the future.

Four possible situations occur with alerts generated by an intrusion-detection

system: true-positive, true-negative, false-positive, and false-negative. The true positive

is when the detection engine generates an alert based on the correct identification of a

potential threat. The true negative is when a detection engine does not generate an alert

for normal traffic: this occurs during a benign network traffic flow. The false positive is

when a detection engine generates an alert for an event that is not malicious. The most

dangerous of conditions is the false negative when a detection engine does not alert on

malicious traffic, thereby allowing it to enter the network without notice. Accuracy in

intrusion detection can be measured by the number of false positives and false negatives

generated by the detection engine.

There are a number of ways that false positive and false negative conditions can

occur. Faulty rule design, including invalid signature information or improper rule

language, is one way, but this is rare. Similarly, rules may be imprecise because there is

no distinctive signature for a particular kind of attack. These types of error would result

in a false positive or false negative across all intrusion-detection engines using the same

rules. False positives and false negatives can also occur through performance problems

with the detection engine itself. To analyze a network traffic flow for signs of intrusion,

the detection engine must examine every packet that traverses the network wire. If the

hardware fails or becomes otherwise overused, it can drop one or more packets, allowing

a malicious packet to enter the network. Unlike a dropped packet in a router, in an

 8

intrusion-detection system a dropped packet is not discarded at the detection engine, but

rather when an intrusion-detection engine drops a packet it passes through to the

protected network. This overload condition could be intentionally caused by an attacker

for the purpose of injecting malicious traffic. It is therefore important to measure the

performance capability of an intrusion-detection system to ensure that the system can

support the capacity of the network on which it is deployed.

One means to improve performance is to split the data stream between multiple

processing engines. However, any malicious bits that may be residing in a traffic flow

may get split too, resulting in neither engine matching the complete signature. To

mitigate this situation, either the detection engines must pass coordination information

between each other, further increasing the computational load on the system, or the

network traffic must be divided by a “flow-aware” network tap that can keep related data

together.

This research examines the Suricata intrusion-detection system (Shimel, 2010).

By containing the multiple threads within the same detection engine, a multi-threaded

detection engine can make intelligent decisions on how to split processing and can

coordinate signature detection between these threads all within the same detection engine.

Moore’s Law (Moore, 1965) predicts that computational speed doubles every eighteen

months for single threaded processing architectures. Multi-threaded processing can take

advantage of that prediction. According to Nielsen’s Law of Internet Bandwidth, we will

also see 50% increases in network bandwidth every year (Nielsen, 2010). The

performance of our intrusion-detection system systems should increase as our demand for

network bandwidth also increases. The developers of Suricata have chosen to address

that demand through multi-threaded processing (OISF, 2011a).

Considering that the most computationally intensive work performed by an

intrusion-detection engine is detection, the Suricata developers decided to use threads for

detection. Figure 1 gives an example with the creation of three detect threads. Suricata

can receive network traffic from the network interface card or from previously recorded

network traffic from a file stored in PCAP format. Traffic is passed through the decode

 9

module where it is first decoded as per its protocol, then the streams are reassembled

prior to being distributed between the signature-detection modules.

Figure 1. Suricata multi-thread design (From OISF, 2011c)

The Suricata configuration file allows the user to configure which and how many

threads, and how many CPUs will be involved in the processing of each stream. Figure 2

illustrates how Suricata can distribute the various modules in the processing stream

across the different CPU cores in the computer.

Figure 2. Suricata multi-CPU affinity (From OISF, 2011c)

 10

Previous work compared the performance of Snort version 2.8.5.2 to Suricata

version 1.0.2 (Day & Burns, 2011). Their testbed consisted of an Ubuntu 10.04 virtual

machine hosted in a VMWare Workstation 6.5 virtual environment running on a 2.8GHz

Quad-Core Intel Xeon CPU with 3GB of RAM. The study examined detection engine

speed as well as the accuracy under varying degrees of network and processor use. CPU

use was controlled using Cpulimit (cpulimit.sourceforge.net), network bandwidth was

controlled using Tcpreplay (tcpreplay.synfin.net), and alert generation was stimulated by

injecting six known malicious exploits generated using the Metasploit framework

(www.metasploit.com). The results show that Snort is more efficient with system

resources than Suricata, and when operating in a multi-CPU environment, Suricata is

more accurate due to fewer false negative alerts. However they concluded that the

overall performance of Suricata in a four-core environment was slower than that of Snort

in a single-core environment when processing 2 gigabytes of previously captured

network data.

In April 2011, Damaye (2011b) published an online report comparing the

accuracy of Snort and Suricata in detecting a wide variety of malicious files and

suspicious actions. His tests incorporated the latest versions of Suricata and Snort with

signature rules from both the Snort Vulnerability Research Team (VRT) and Emerging

Threats (ET). Creating a custom application in Python specifically designed to send a

variety of specific vulnerabilities through an intrusion-detection system via a number of

different vectors, he attempted to measure the accuracy of both detection engines.

During his tests he measured the number of true and false positives and negatives and

assigned a score to Snort and Suricata for each of the tests conducted. The results of his

study concluded that the two rule sets (VRT and ET) worked well together but required

tuning to be most effective. He further concluded that while Suricata is a promising new

technology with key features, Snort still is preferable for production environments.

Leblond (2001) ran a series of tests to examine the performance of the multi-

threading capabilities of Suricata. By adjusting the detect_thread_ratio and the

cpu_affinity variables in the Suricata configuration file on a dual 6-core CPU system with

hyper-threading enabled, he was able to achieve the best performance by reducing the

 11

thread ratio to .125, which corresponded to three threads generated by Suricata in his test

environment. He also determined that the hyper-threading configuration caused

variations in the performance results (30% variation between runs) and that it was

actually best to configure the multiple threads to run on the same hardware CPU.

Following his initial research, in February 2011 Leblond dove deeper into the workings

of the Suricata multi-threading design. Using a tool called Perf-tool

(code.google.com/p/google-perftools) he was able to determine that, as the number of

threads increased, more time was spent waiting for an available lock. His conclusion was

that configuring Suricata to run in RunModeFilePcapAutoFp results in a steady

performance increase, whereas RunModeFilePcapAuto shows an initial increase, then a

continued decrease in performance as measured by packets per second processed.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. DESCRIPTION OF METHODOLOGY AND EXPERIMENTS

Our experiments tested and compared the Suricata and Snort intrusion-detection

engines in performance and accuracy in a busy virtual environment. The experiments

evaluated performance by measuring the percentage of CPU use, memory use, and

network use. We measured accuracy by subjecting both detection engines to malicious

traffic in controlled tests, and comparing the alerts generated by each application.

Traffic data for our experiments originated from a network tap located on the

backbone of the Naval Postgraduate School (NPS) Education Resource Network (ERN).

At the point of the network tap the NPS ERN has a bandwidth of 20 Gbps, providing a

large “pipe” to send traffic to our intrusion-detection system. Traffic across the NPS

backbone averages 200Mbps per day. We used this traffic to compare the performance

and alerts of the virtual machine while running Snort and Suricata.

Signatures for the experiments came from the two primary open-source intrusion-

detection system rule maintainers, the SourceFire Vulnerability Research Team (VRT)

and Emerging Threats (ET). The SourceFire VRT “develops and maintains the official

rule set” for Snort (SourceFire, 2011). Emerging Threats originally began as a

community-authored list of rules to augment the SourceFire VRT body of rules. Initially

considered less robust than the VRT rules, the ET rules now provide new capabilities.

Where the VRT rule set is specifically designed to support Snort exclusively, the ET rule

set is “platform agnostic” by design and will work on any type of open-source intrusion-

detection system application (Emerging Threats, 2011). Both Suricata and Snort support

the rules from VRT and ET.

Our research questions are:

1. Does Suricata with its multi-threaded processing perform better than Snort with

its single-threaded processing?

2. As CPU and memory use increase, are there differences in the number of

dropped packets between the two engines?

3. Will Suricata handle heavy loads better than Snort?

 14

4. Is Suricata suitable to be implemented within the NPS production network? At

the time of the experiment, the NPS Information Technology Department was unsure

whether to use Suricata and was hoping our experiments would help them to decide.

A. EXPERIMENTAL SETUP

Most experiments were conducted in a virtual machine running VMware ESXi

4.1. The server hardware was a Dell Poweredge R710 dual quad-core server with 96 GB

of RAM. Each CPU was an Intel Xenon E5630 running at 2.4 Ghz. The data storage

was accomplished through three fiber-channel attached RAID 5 configured arrays,

supporting the relatively large network traffic capture files (PCAP files) needed to test

the detection engines. The server had eight 1Gbps network cards installed, with four

reserved for the various management activities and four available for the Virtual

Machine. For our experiments the server was configured with two interface cards, one

for system administration and one to capture network traffic. The interface card attached

to the network tap was configured in promiscuous mode to allow it to receive all of the

network traffic. Our virtual machine used 4 CPU cores and 16GB of RAM. The

operating system chosen for the experiment was CentOS 5.6 due to its popularity for

enterprise applications and close relationship to Red Hat Enterprise Linux.

Installation of Suricata was relatively straightforward. Precompiled versions of

Suricata were difficult to find due in part to the relative newness of Suricata compared to

Snort. So we compiled it. To do this we had to install a number of software

dependencies which were not included in the CentOS 5.6 distribution. Among these

were the Perl compatible regular expression (PCRE) libraries, packet-capture libraries

(Libpcap) to allow the operating system to capture all of the traffic on the network, and

YAML Libraries (libyaml) required to interpret Suricata’s YAML-based configuration

files (Ben-Kiki, Evans, & dot Net, 2010).

Initially, we started with version 1.0.3 of Suricata, but during the experiment the

Suricata developers released a major version change to 1.1 beta2. This version fixed

several key performance and rule issues that were present in the earlier versions (OISF,

 15

2011a). After the initial installation the upgrade process was simple, involving only a

download of the 1.1beta2 source code and compiling it on the system.

Installation of Snort 2.9.0.5 on CentOS Linux distributions has a number of

known issues, namely compatibility with the version of Libpcap that is distributed with

CentOS prior to 5.6. Fortunately, Vincent Cojot maintains a series of RPMs

(precompiled software for installation on Red Hat-based Linux distributions) for Snort on

CentOS (vscojot.free.fr/dist/snort). Installation of Snort simply involved downloading

the latest Snort RPM and extracting the program. The required PCAP library was already

installed during the Suricata install so there were no other dependencies involved.

During the experiments the need to upgrade Snort 2.9.1 beta also became apparent due to

the large size of our PCAP files. Unfortunately Vincent Cojot’s RPM repository did not

contain the latest 2.9.1 beta version of Snort at the time, so we were unable to upgrade to

2.9.1 and conduct some of our planned tests.

Care must be taken to ensure that the proper version of rules is downloaded for

the corresponding intrusion-detection engine, or a significant number of errors will be

reported during startup in Suricata, and in the case of Snort the startup process will abort

altogether. The VRT web site does not maintain a separate set of rules optimized for

Suricata, so upon loading the VRT rules in Suricata we received a number of rule errors.

We also used Pytbull, a utility written in Python and designed by Sebastian

Damay to test and evaluate an intrusion-detection system’s ability to detect malicious

traffic (Damaye, 2011a) by sending it sample traffic. Installation of Pytbull was fairly

simple considering that several of the dependencies for Pytbull were already installed for

Suricata and Snort. Pytbull requires Python and Scapy (www.secdev.org/projects/scapy),

and the environment must have an FTP server and a web server available.

To capture live traffic from the network and replay that data for static file

analysis, the Tcpdump (tcpdump.org) and Tcpreplay (tcpreplay.synfin.net) utilities were

also required. Collection of the system performance data while running each of the

experiments was accomplished using the tool Collectl (Collectl.sourceforge.net).

 16

B. EXPERIMENTS

The first experiment examined the real-time performance of each system

independently while monitoring live backbone traffic from the NPS ERN. Performance

data from the CPU, RAM, and network interface was recorded, examined, and compared.

A variation of the first experiment ran both detection engines simultaneously.

The second experiment ran Suricata on the NPS Hamming supercomputer. The

NPS High Performance Computing Center operates a Sun Microsystems 6048 “blade”

system with 144 blades and 1152 CPU cores (Haferman, 2011) running CentOS 5.4 as

the operating system. For our experiment we used one compute node composed of 48

AMD Opteron 6174 12-core processors with 125GB of RAM available. We measured

the increased performance when running Suricata on this high-performance computer.

The goal was to determine if it was feasible for an intrusion analyst to process stored

network traffic significantly more quickly in such an environment. This task is important

for our Information Technology Department as they are regularly called upon to do

retrospective analysis of data of particular attacks.

The third experiment measured how well each intrusion-detection system detected

a variety of malicious packets sent to it. This experiment was not concerned as much

with the computational performance as with the accuracy of detection.

Experiment One Setup

The first experiment compared Suricata to Snort when monitoring network traffic

at the NPS border router. The NPS backbone connects to the Internet with a maximum

bandwidth of 20Gbps. Figure 3 shows the logical network diagram for Experiment One.

 17

Figure 3. Experiment One setup

We first installed and ran each detection engine individually in the virtual

machine environment with the combined ET and VRT rule sets. Collectl was used to

record the CPU, RAM, and network use of the server. The experiments were conducted

over approximately a 4 hour period of normal network use on the NPS backbone.

Performance configuration settings for each detection engine were set to the default

parameters.

We then ran instances of both Snort and Suricata on the virtual machine at the

same time. This allowed us to compare the accuracy of each detection engine in

generating alerts from the same live network traffic. System CPU, RAM and network

use were also recorded for this experiment, but are not a reliable indicator of the true

intrusion-detection system load since it is unusual to run two engines on the same system

at the same time. We then evaluated the alert logs from each detection engine looking for

differences.

Experiment Two Setup

For Experiment Two, we put Suricata on the Hamming supercomputer to measure

the speed of processing there. We used Tcpdump to capture a large PCAP file from the

NPS ERN backbone. The file was roughly 6GB and consisted of full packet data

(obtained by tcpdump -nnvi eth0 -s0), the same type of data stored in a typical

network archive. To reduce the impact of disk input/output latency we copied the PCAP

file to a RAM disk on the Hamming computer. We ran Suricata with this large PCAP file

 18

on both our Experiment One setup and on the Hamming supercomputer, and compared

the time it took to analyze the file using the full rule set with various configuration

settings.

Experiment Three Setup

The third experiment tested how accurately Suricata and Snort recognized

malicious or irregular traffic. Using Pytbull we generated a number of tests containing

suspicious or malicious payloads, and sent them through the intrusion-detection systems

to stimulate alerts. These tests were divided into nine categories: client-side attacks,

common rule testing, malformed traffic, packet fragmentation, failed authentication,

intrusion-detection system evasion, shell code, denial of service, and malware

identification. Each category contains a number of different tests for evaluating our

detection engines.

Setup for this experiment required two additional machines: one to generate the

test traffic (Client), and one to host an HTTP server with malicious PDF files (Hostile

Internet web server) as illustrated in figure 4. We used a VMWare Workstation7 virtual

machine running Ubuntu 10.04 for the client machine, and for the web server with the

PDF files we used a Dell Latitude laptop running Xubuntu. This test required an FTP

service and a web server be installed and running on the intrusion-detection system

server. We chose to install Vsftpd for our FTP client due to its small size and ease in

configuration. Fortunately CentOS 5.6 already had a web server included in the base

distribution. To log the computational performance data we ran Collectl.

Figure 4. Experiment Three logical network diagram

 19

For the experiment, our web server was preloaded with a variety of corrupt files.

These files consisted of segments of observed malware from security-related sites on the

Internet that collect these files for research purposes. Each tainted file was hashed prior

to distribution to ensure the integrity of the file. For our experiment we selected some

typical file types seen on the Internet, specifically four PDF and one XLS file.

Running the experiment consisted of starting Collectl on our system testbed

computer to log the performance data, then starting the Pytbull client-side remote shell

script there. Next we started the Httpd service on both the hostile web server and the

intrusion-detection server. In addition, we start the Vsftpd service on the intrusion-

detection server. After confirming that these services were running, we started our

detection engine, either Snort or Suricata. Once the detection engine was loaded and

listening to the network interface, we ran Pytbull from out testing client, pointing it at the

address of our intrusion-detection system. The application completed the battery of tests,

exited, and generated an HTML report listing the exploits that were attempted and the

alert response from the intrusion-detection system if any. Then we stopped the HTTP

services and the intrusion-detection services.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

IV. DISCUSSION OF RESULTS

Our experiments occurred over several days. As the experiments progressed we

ran into a few issues while tuning Suricata in the virtual environment. We encountered

an apparent upper limit in the amount of RAM that applications can use in a 32-bit

operating system. As a result we were unable to load the entire combined ET and VRT

rule set (more than 30,000 rules) in our 32-bit CentOS 5.6 operating system. The

limitation is due to a 4GB memory limit for running both applications and the kernel in

32-bit Linux operating systems. (Suricata if compiled on a 64-bit operating system could

take advantage of up to 48GB of RAM and could accommodate over 30,000 rules.) As a

result, for our experiments we had to reduce the number of rules to a combination of ET

and VRT rules totaling 16,996 signatures. The list of rule files used in our experiments

can be found in Appendix B Annex 1.

We also ran into a problem with keeping up with network traffic, which limited

our ability to effectively measure the accuracy of both the Snort and Suricata detection

engines. While in promiscuous mode, the kernel was unable to buffer the entire network

stream as it was passed from the network interface card. Using Tcpdump, we first saw

dropped packets at rates of up to 50%, and both Suricata and Snort indicated high

numbers of dropped packets in their log files. Considering the commonality of the high

rate of packet drops, we concluded that the cause was in the virtual networking

environment of the ESXi server. Attempting to mitigate this problem, we adjusted

several kernel settings on the server to increase the memory allocated to the networking

buffer. The default buffer settings appear to be insufficiently large to accommodate the

volume of traffic on the NPS network backbone. The following commands were used to

increase the kernel buffer sizes.

sysctl -w net.core.netdev_max_backlog=10000

sysctl -w net.core.rmem_default=16777216

sysctl -w net.core.rmem_max=33554432

sysctl -w net.ipv4.tcp_mem=’194688 259584 389376’

sysctl -w net.ipv4.tcp_rmem=’1048576 4194304 33554432’

sysctl -w net.ipv4.tcp_no_metrics_save=1

 22

With these modified kernel parameters, we reduced the packets dropped by

Tcpdump to less than 1% (70121 packets dropped out of 7822944 packets). While this

did not eliminate all packet loss, it reduced it to an acceptable rate for continued testing.

A. EXPERIMENT ONE

The data collected from Experiment One showed that Suricata consumed more

computational resources than Snort while monitoring the same amount of network traffic.

Figures 5 and 6 graph the virtual server CPU use of both Snort and Suricata while

monitoring the backbone interface. CPU use for Snort is 60–70 % for one CPU while

Suricata maintains an average in the 50–60% range across all four CPUs...but Suricata

uses each individual CPU at a rate less than that of Snort.

0

50

100

150

200

250

300

350

400

Suricata CPU Utilization 08/08

(Cumulative)

CPU 0 CPU 1 CPU 2 CPU 3

Figure 5. Suricata CPU Use

 23

0

50

100

150

200

250

300

350

400

Snort CPU Utilization 08/08

(Cumulative)

CPU 0 CPU 1 CPU 2 CPU 3

Figure 6. Snort CPU Use

Our data showed that Suricata was more memory-intensive than Snort. As

illustrated in Figure 7, system memory use increased starting at approximately 1.5 Gbytes

and increased to just over 3 Gbytes before tapering off near 3.3 Gbytes. Snort’s memory

usage was relatively low, starting at only 0.8 Gbytes and remaining below 1.0 Gbytes for

the entire test period, as shown in Figure 8.

0

1

2

3

4

G
B

y
te

s

System RAM Utilization

Suricata 08/08

Figure 7. Suricata RAM Use

 24

0

0.5

1

1.5

2

2.5

3

3.5

4

G
B

y
te

s

System RAM Utilization

Snort 08/08

Figure 8. Snort RAM Use

Network performance remained an issue for our tests with Snort. While we were

able to reduce the packet drop rate in Tcpdump to less than 1%, the output log from Snort

reported a packet drop rate of 53%. Suricata, on the other hand, had a drop rate of 7%.

The Snort log file further classifies the dropped packets as “outstanding packets,”

meaning packets that are dropped before being received by the packet processing engine

in Snort (Watchinski, 2010). Our data showed that the number of outstanding packets in

Snort matched the number of dropped packets in Snort, indicating that the loss of packets

occurred prior to packet capture, and is therefore not a function of the processing load of

the detection engine itself. Suricata does not break down the composition of dropped

packets in the same manner as Snort, so the same deduction cannot be assumed solely by

the log files. Further investigation and research should be conducted to determine why

there is a disparity between the rate of dropped packets in Tcpdump, Suricata, and Snort.

Network performance during the first experiment was not comparable since the

detection engines were not monitoring the same network traffic at the same time. The

average packet rate during the Suricata period was 33,731 packets per second, and during

the Snort period was 20,090 packets per second. Figures 9 and 10 illustrate the observed

packet rate variation between the Snort and the Suricata.

 25

0

10

20

30

40

50

Th
o

u
sa

n
d

s
o

f
P

a
ck

e
ts

Packet Rate

Suricata Period 08/08

Average = 33731 Packets/sec

Figure 9. Suricata Packet Rate

0

10

20

30

40

50

T
h

o
u

sa
n

d
s

o
f

P
a

ck
e

ts

Packet Rate

Snort Period 08/08

Average = 20090 Packets/sec

Figure 10. Snort Packet Rate

Experiment One also measured the alerts generated by Suricata and Snort running

simultaneously on the same system. Figure 11 and Appendix A, Annex 1, compare the

alerts generated by the two detection engines.

 26

0 20 40 60 80 100 120

ICMP PING Windows

ICMP PING

ICMP Echo Reply

ICMP Time-To-Live Exceeded in Transit

GPL SCAN same SRC/DST

GPL MISC IP Proto 103 PIM

ET POLICY Outbound Multiple Non-SMTP Server Emails

ET POLICY SSN Detected in Clear Text (dashed)

ET POLICY Credit Card Number Detected in Clear (16 digit spaced)

ET POLICY Credit Card Number Detected in Clear (16 digit dashed)

ET POLICY Credit Card Number Detected in Clear (16 digit)

ET POLICY Credit Card Number Detected in Clear (15 digit)

ET POLICY Credit Card Number Detected in Clear (15 digit spaced)

ET POLICY Credit Card Number Detected in Clear (14 digit)

ET POLICY SSN Detected in Clear Text (spaced)

ET POLICY ZIPPED DOC in transit

ET POLICY ZIPPED XLS in transit

ET POLICY ZIPPED EXE in transit

ET POLICY ZIPPED PPT in transit

ET POLICY SSH session in progress on Expected Port

ET POLICY SSH Client Banner Detected on Unusual Port

ET POLICY EIN in the clear (US-IRS Employer ID Number)

ET POLICY Reserved Internal IP Traffic

ET POLICY Unusual number of DNS No Such Name Responses

ET WORM Allaple ICMP Sweep Ping Outbound

ET POLICY Outbound SMTP on port 587

ET P2P BitTorrent DHT ping request

ET POLICY DNS Update From External net

ET SCAN TCP Traffic (ET SCAN Malformed Packet SYN RST)

ET POLICY OpenSSL Demo CA - Internet Widgits Pty (O)

GPL ICMP_INFO PING Windows

GPL ICMP_INFO PING

GPL ICMP_INFO Echo Reply

GPL MISC Time-To-Live Exceeded in Transit

GPL ICMP L3retriever Ping

GPL ICMP_INFO PING speedera

GPL ICMP_INFO Destination Unreachable Communication Administratively Prohibited

GPL ICMP_INFO Destination Unreachable Communication with Destination Host is Administratively Prohibited

GPL ICMP_INFO Destination Unreachable Communication with Destination Network is Administratively Prohibited

GPL POLICY TRAFFIC Non-Standard IP protocol

GPL VOIP SIP INVITE message flooding

Thousands of alerts

Suricata vs Snort Alert Frequency 7/29

Snort Alerts Suricata Alerts

Figure 11. Suricata and Snort Combined Alert Frequency

 27

The data show that for most rules Suricata generated more alerts than Snort on the

same network traffic. Though both engines loaded the same rule sets, we did get error

messages and some rules may have failed to load successfully on one engine. Other

reasons could be a bug in the implementation of the rule on an engine, or a problem in the

algorithm used to analyze the traffic. Further study at the packet level would be

necessary to determine exactly what happened in each case.

B. EXPERIMENT TWO

Experiment Two ran Suricata on the Hamming supercomputer. We tested a

number of configuration settings for the number of processing threads and the run mode.

Installation of Snort and Suricata on Hamming was straightforward, with the only

difference from Experiment One being the relocation of the libraries and binaries to a

user-accessible directory. For these experiments, we used a 6GB Libpcap file previously

generated from NPS backbone traffic. We did not study the accuracy of the alerts for this

experiment, only the relative difference in processing performance.

We adjusted three parameters in the Suricata configuration file to tune the

performance: detect_thread_ratio, max-pending-packets, and run mode (OISF, 2010).

• The detect_thread_ratio value determines the number of threads that

Suricata will generate within the detection engine. Detect_thread_ratio is

multiplied by the number of CPUs available to determine the number of

threads. The default detect_thread_ratio in Suricata is 1.5. In our

experiments we used values from .1 through 2.0.

• The max-pending-packets value determines the maximum number of

packets the detection engine will process simultaneously. There is a

tradeoff between caching and CPU performance as this number is

increased. While increasing this number will more fully use multiple

CPUs it will also increase the amount of caching required within the

detection engine. The default for max-pending-packets is 50. In our

experiments we increased this value by an order of 10 for each iteration up

to 50,000.

 28

• The runmode value determines how Suricata will handle the processing of

each thread. There are three options: single, auto, and autofp. Single

instructs Suricata to operate in single-threaded mode. In auto mode

Suricata takes packets from a single flow and distributes them among the

various detect threads. In autofp mode all packets from a single flow are

assigned to a single detect thread.

Results from our experiment showed that with 48 CPUs the difference between

the performance in the auto and autofp runmode increased as we increased the max-

pending-packets variable across all detect_thread_ratio settings. We found that the

detect_thread_ratio setting had minimal impact on performance in either the auto or

autofp runmode regardless of the max-pending-packets setting. Figure 12 illustrates the

performance difference between the auto and autofp runmode averaged across all of the

detect_thread_ratio settings as measured in thousands of packets per second.

15

35

55

75

95

115

135

50 500 5000 50000

P
a

ck
e

ts
/

se
c

(x
1

0
0

0
)

Run-mode Performance

Hamming 48-CPU

AutoFP

Auto

Max Pending Packets

Figure 12. Suricata runmode performance for 48 CPUs

On our 4-CPU virtual machine testbed running Suricata we did not see the same

performance increase observed on the 48 CPU Hamming computer when adjusting the

max-pending-packets. As Figure 13 illustrates, our observations showed that running in

AutoFP runmode on a 4 CPU machine incurs a performance penalty over the Auto

runmode. Performance for both AutoFP and Auto runmodes averaged around 19,000

packets per second.

 29

15

20

25

30

35

50 500 5000 50000

P
a

ck
e

ts
/

se
c

(x
1

0
0

0
)

Run-mode Performance

4-CPU Testbed

AutoFP

Auto

Max Pending Packets

Figure 13. Suricata runmode performance for 4 CPUs

Our 6GB Libpcap file consisted of nearly 8 million packets with an average size

of 803.6 bytes each. Based on these average statistics, the minimum packets per second

processed by Suricata in Figure 13 equates to 108 Mbps, and the maximum packets per

second on the Figure corresponds to 854 Mbps.

Unlike operations on the 48-CPU Hamming, we did observe an improvement in

performance of the Auto runmode as we increased the detect_thread_ratio resulting in an

increase in the number of threads. In Figure 14 we see that the noticeable drop in

performance at 8 threads while in the AutoFP runmode is the result of limited system

memory causing the operating system to begin using the hard drive swap space to

augment the RAM.

5

10

15

20

25

30

35

40

45

1.0 2.0 3.0 8.0

P
a

ck
e

ts
/

se
c

(x
1

0
0

0
)

Detect Thread Ratio Performance

4-CPU Testbed

AutoFP @ 5,000 MPP

Auto @ 5,000 MPP

Threads

Figure 14. Suricata detect thread ratio performance 4-CPU

 30

C. EXPERIMENT THREE

Experiment Three evaluated the accuracy of Snort and Suricata when exposed to

known malicious packets. For 54 tests in 9 categories conducted against both Suricata

and Snort, Suricata had 12 and Snort 16 false negatives where they did not detect the

malicious traffic. Where false negatives were observed in both Suricata and Snort, the

most likely reason was that the rule used by both was not loaded or optimized for the

particular threat. In only two cases did Snort and Suricata report different results: One

was a client-side attack where Suricata detected all 5 tests and Snort only 3, and the other

was in the evasion-technique attack where Snort identified that an evasion attempt was

underway; while Suricata did not.

False positives were more difficult to measure considering the composite nature

of the Pytbull tests. For example, Test 8 under the category Test Rules is a full SYN

scan. A true positive result would be an alert that a full SYN scan was underway.

However a full SYN scan will itself generate a large number of more specific alerts that

are also helpful warnings. To address this we have created a category called “Grey

Positive” for an alert that could be perceived as either a false positive or a true positive

depending on the context. If an alert clearly is a false positive, such as an alert for a

Trojan infection during an Nmap SYN scan, then we will categorize it as a false positive.

However, if an alert is generated for an attempted scan of the VNC protocol while

conducting the Nmap SYN scan, the alert is an indicator of a scan, and could therefore be

considered a “grey positive.”

Tables 1 and 2 summarize our results. Snort generated 10 false positives and

Suricata 8; the difference was in the fragmented packets category where Snort had 2 false

positives and Suricata had none. This low number of false positives can be accounted for

when looking at our “grey positive” category. Snort had a total of 1168 grey positives

and Suricata 1449. The majority of these came from the category of evasion techniques

because the tests consisted of five separate port scans, so the amount of traffic generated

for this test alone was significantly more than any other test.

Refer to Appendix A Annex 2 for a sample of the detailed results of each test.

 31

Test Category
Snort

False -

Snort

False +
Snort

Grey +

Snort

True +

Snort

Other

Client Side Attacks 5 0 0 0 10

Test Rules 0 4 61 11 7

Bad Traffic 2 0 5 0 3

Fragmented Packets 3 2 0 0 4

Multiple Failed Logins 0 0 0 3 3

Evasion Techniques 1 3 1640 13 20

Shell Codes 4 1 9 16 13

Denial of Service 0 0 5 1 1

PCAP Replay 1 0 0 0 1

Total 16 10 1168 44 62

Table 1. Summary of Snort Alerts

Test Category
Suricata

False -

Suricata

False +
Suricata

Grey +

Suricata

True +

Suricata

Other

Client Side Attacks 0 0 9 16 16

Test Rules 0 4 68 12 12

Bad Traffic 2 0 5 0 6

Fragmented Packets 3 0 4 2 9

Multiple Failed Logins 0 0 4 0 2

Evasion Techniques 2 3 1275 12 29

Shell Codes 4 1 4 38 25

Denial of Service 0 0 5 1 2

PCAP Replay 1 0 0 0 2

Total 12 8 1449 81 103

Table 2. Summary of Suricata Alerts

In calculating the recall and precision for our experiment, we calculated both a

pure precision, consisting of only false and true positive, and a realistic precision, which

combined the false and grey positives. Table 3 shows the recall and precision for our

tests.

 32

Application Recall Precision

Snort .73 .81

Snort (grey and false +) .036

Suricata .87 .91

Suricata (grey and false +) .052

Table 3. Snort and Suricata Recall and Precision

We now give an analysis of the detection success in each category of attack.

• Client-Side Attacks – These tests simulated the actions of a user

downloading an infected file from the Internet. We conducted 5 Client

Side Attack tests where we downloaded 4 infected PDF files and 1

infected XLS file across our network and through the intrusion-detection

system. In all 5 cases Suricata generated true-positive alerts from the

malicious downloads. On the same rule set Snort did not generate any

alerts. There were a number of additional alerts that were false positives

generated during the test including alerts for a file transfer (a necessary

function of the Pytbull application to record the alert data), a tilde

character in the URI, and a successful FTP login (a necessary function

used by Pytbull to retrieve the alert data).

• Test Rules – This test evaluated how well the detection engine responded

to a variety of different probes into a network. Included are Local File

Inclusion (LFI) attacks, various network scans, SQL injections, and

reverse shell attempts. For these tests Pytbull used HTTP requests, along

with the Nmap, Netcat, and Nikto applications. Both Suricata and Snort

generated a number of true positive and false positive alerts for the test

traffic. In test number 9 Pytbull generates an Nmap full-connect scan

across all 65535 ports. While this was correctly identified and alerted by

both Suricata and Snort as an Nmap scan, both detection engines also

generated an alert for a potential VNC scan of ports 5800-5820, which is

understandable since Nmap is scanning VNC ports too. During the same

 33

scan both Suricata and Snort generated a false positive alert for a possible

network Trojan attack, which was in fact not occurring. While these false

positive alerts reflected a valid event (scanning of VNC ports), they could

be a distraction from the larger overall picture that the entire network was

being scanned.

• Bad Traffic – These tests consisted of malformed network packets in

which either the flags in the TCP header were not set correctly or the type

of packet did not match its header. This test used Nmap and Scapy to

generate malformed packets. Both Suricata and Snort only alerted on 1

out of the 3 malformed packet tests, and neither generated an alarm on the

Scapy-modified packets. The first packet was a common “Xmas scan”

generated by Nmap; the second used Scapy to modify the IP protocol flag

to indicate version 3; and the third changed the source and destination port

to the same number.

• Fragmented Packets – For these tests Pytbull implemented two types of

fragmented packet attacks, a Ping-of-Death attack where the packet

fragments when reassembled are larger than allowed in the protocol

specification, and a Nestea attack where the order of reassembly is out of

sequence. Both Suricata and Snort were unable to detect the Nestea

attack, and Snort generated a false-positive alert for an outbound SSH

scan. Suricata alone detected the Ping-of-Death attack.

• Multiple Failed Logins Using a known bad username and password

combination, Pytbull attempted to log into the server multiple times.

Suricata generated a false positive alert for each of these attempts as a

regular login attempt but not as a failed attempt. Snort generated an “FTP

Bad Login” alert for each one.

• Evasion Techniques – These tests employed common techniques for

evading detection engines. The first two used the decoy function within

Nmap to obscure the source address of the attacker by hiding it within a

 34

number of other IP addresses. We were unable to obtain accurate results

from this test because our installation of Pytbull was on a virtual machine

that performed network-address translation, so the attempts by Nmap to

use different IP addresses resulted in the same IP address, defeating the

evasion attempt. The next test used hexadecimal encoding to attempt to

evade the detection engines; neither Snort nor Suricata detected it. Test 28

used Nmap to generate small fragments for the TCP portion of the packets

in an attempt to overwhelm the detection engine with reassembly tasks.

Both detection engines were able to detect that a scan was occurring,

however, Snort was the only one that identified the use of Nmap scripting

and generated an appropriate alert. In tests 29 through 38 Pytbull used the

various evasion techniques within the Nikto web application scanner to

attempt an evasion of the detection engine. Both Suricata and Snort were

effective in detecting the scans; however in only two of the tests (30 and

36) could they identify the scan as Nikto-specific. On all of the other tests

both Suricata and Snort alerted on the web scanning activity but did not

identify the scans as Nikto. Finally, in test 39 Pytbull used JavaScript

obfuscation to attempt evasion of the detection engines. Snort alerted but

Suricata did not.

• Shell Codes – Pytbull sent 13 different shellcode attacks through the

detection engine. Of the 13 attempts, Suricata detected 10 and Snort

detected 9. The three shell code attempts missed by Suricata were also

missed by Snort, and were 1)” IRIX SGI + NOOP,” 2) Buffer Overflow

Attempt, and 3) Cisco VTY creation, password creation, and privilege

escalation. In addition to these three, Snort also missed the “x86 setgid 0

&& setuid 0.”

• Denial of Service – Denial-of-service attacks are difficult to test without

causing a true denial of service. Pytbull has two that it can perform. One

uses the utility hping to generate an ICMP ping flood to the target

machine, and one is an attempt to attack a specific application (MSSQL in

 35

this case) with a DoS attack. We were unable to perform the hping DoS

attack as that would have caused an actual denial of service on our

network. Both Suricata and Snort detected the MSSQL DoS attempt,

however neither one identified it as a DoS-specific attack. Instead, both

alerted on suspicious traffic sent to the MSSQL TCP port 1433.

• Pcap Replay – This is the replay of a previously captured malicious

payload to test how well the intrusion-detection system engine can detect

other malware. For our test we used only one Pcap capture containing a

sample of the Slammer worm. In this test neither Snort nor Suricata

detected the Slammer worm code.

To summarize Experiment 3, when Suricata and Snort were loaded using the

same rule set, in some cases both failed to generate alerts on known malicious traffic.

When both failed, we can be fairly confident that this can be attributed to the rules and

not the detection engines. In a few cases there were discrepancies between the Snort and

Suricata alerts. One explanation could be differences in the implementation of the rule

language between Snort and Suricata. Presently Suricata version 1.1 beta 2 does not

support the “file_data” rule keyword, and rules in the VRT rule set that use it cause an

error when loaded. Another explanation could be in the implementation of the detection

algorithm within each application which could affect how the detection engine examines

packets, but it is hard to obtain details of the implementations.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

V. CONCLUSION

A. DISCUSSION

We evaluated two open-source network-based intrusion-detection systems for the

NPS environment. Snort is currently the de-facto standard for open-source network-

based intrusion-detection systems around the world (SourceFire, 2011). Suricata is still

in early stages of development but offers speed improvements and capabilities

unavailable in Snort.

Both Suricata and Snort are very capable intrusion-detection systems, each with

strengths and weaknesses. We tested Suricata and Snort on similar data to provide an

informed recommendation to the Information Technology Department of the Naval

Postgraduate School on whether to use Suricata as an additional layer of defense for the

Educational Research Network. Both Suricata and Snort performed well during tests.

Both did have false positives and false negatives, but much of that can be attributed to

weaknesses of the rule set used for the tests. It was inconclusive from our tests whether

Suricata or Snort has a better detection algorithm.

Suricata’s multi-threaded architecture requires more memory and CPU resources

than Snort. We saw that the aggregate CPU use of Suricata was nearly double that of

Snort, and Suricata used over double the amount of RAM used by Snort. This could be

attributed to the overhead required to manage the multiple detection threads in Suricata.

Suricata has the advantage that it can grow to accommodate increased network traffic

without requiring multiple instances. Snort is lightweight and fast but limited in its

ability to scale beyond 200-300 Mbps network bandwidth per instance. While Snort’s

processing overhead is less than that of Suricata, the need for multiple instances to

accomplish what Suricata can achieve with its multi-threaded design elevates the cost to

operate and manage a Snort environment.

Experiment Two showed a big improvement in the performance of Suricata on 48

CPUs, but only by increasing the configuration variable max-pending-packets while in

the autofp run-mode.

 38

Experiment Three reinforced the importance of a well-tuned rule set for a system.

In our test, both detection engines missed several common malicious payloads that

should have been detected. Had the rules been properly tuned for the environment the

false negative rate would have been less with a corresponding increase in true positive

alerts.

Operating an intrusion-detection system on a virtual host introduced additional

complications. In our experiments, we had problems with network throughput when

monitoring the live network traffic from the 20Gbps network backbone. Further

investigation into the network hardware used with the ESXi server is required to diagnose

the cause for the high number of dropped packets on Suricata, Snort and Tcpdump.

However, operational deployment of intrusion detection in a virtual host is unnecessary at

NPS so these issues may be moot.

During our research the Suricata development team released three minor version

changes (1.0.3, 1.0.4 and 1.0.5) and two beta versions (1.1 beta1 and 2) of the next minor

version change. Each version contained significant improvements to the previous

version, illustrating the rapid advancement of the detection engine. By comparison, Snort

has been on the same production release (2.9.0.5) for 5 months. Rapid development

requiring frequent upgrades is not an optimal choice for a production environment

intrusion detection, so that is a weakness of Suricata. Nonetheless, the pace of upgrades

is likely to slow and Suricata should be more reliable.

B. RECOMMENDATION

Suricata is a very capable intrusion-detection system and should be used to

augment the existing Snort system at the Naval Postgraduate School. The ability to use

multi-threaded techniques in a multiple-CPU environment will give Suricata an

advantage over single-threaded detection engines like Snort as the network throughput at

NPS continues to increase.

Snort is still very capable and should remain in use within the NPS production

environment for the immediate future. But as the actual bandwidth on the NPS ERN

backbone continues to grow to rates greater than 200 Mbps, the single-threaded Snort

 39

architecture will not be able to keep up with the network load (Lococo, 2011). Deploying

both Snort and Suricata today will mean an easier transition to the multi-thread design of

Suricata as the network load begins to overwhelm the existing Snort infrastructure.

Network intrusion-detection systems are just one security technology, and we

must also incorporate host-based systems so that we can catch the percentage of threats

that are missed by firewalls and other network-monitoring systems. A weakness of both

is the reliance on signatures for detection. While signatures will detect most of the

known malicious traffic in an enterprise, they cannot detect something that has not been

seen before. For this we must additionally use anomaly-based intrusion-detection

systems. To support the distributed deployment of intrusion-detection systems Suricata

should consider incorporating SNMP traps as an additional means to deliver alerts to the

event management console.

C. FUTURE RESEARCH

There are a number of areas for future research involving intrusion detection. As

attempts to compromise our information become more and more complex, it will become

more difficult to detect these new threats. As we increase the number of sensors

distributed throughout our networks, the task of managing and correlating the information

produced by these sensors grows. If we are to be effective at monitoring our networks

and guarding the information that resides therein, we must make a concerted effort to

become aware of everything on the network. Alert and event correlation is a step in that

direction, and improving how we monitor and interpret that information is worthy of

future research.

Within the intrusion-detection category specifically, additional research should be

performed in the incorporation of signature and anomaly-based intrusion detection to

meet the unknown and persistent threats to our information and data infrastructure.

Presently the two technologies are usually separate and require independent

implementations. Future research should address the integration of both signature and

anomaly-based intrusion detection into a unified and seamless solution.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

APPENDIX A

ANNEX 1 TABLE OF COMBINED SURICATA AND SNORT ALERTS

DURING TESTING

The following table is a summary of the alerts generated during the variation of

experiment 1: the combined run of Suricata and Snort while observing the same ERN

network traffic. The SID is the Snort ID number of the rule associated with the

description in the next column. The Difference column is the difference between the

number of alerts generated by Suricata and Snort, and is represented as a percentage in

the last column. This data was collected over a 4 hour period where both detection

engines were started and stopped within one second of each other.

SID Alert Description

Suricata

Alerts

Snort

Alerts Difference %

382 ICMP PING Windows 805 791 14 2%

384 ICMP PING 13112 11986 1126 9%

408 ICMP Echo Reply 13115 11989 1126 9%

449 ICMP Time-To-Live Exceeded in Transit 13122 11996 1126 9%

527 GPL SCAN same SRC/DST 12940

2189 GPL MISC IP Proto 103 PIM 16481 16229 252 2%

2000328 ET POLICY Outbound Multiple Non-SMTP Server Emails 16842 16535 307 2%

2001328 ET POLICY SSN Detected in Clear Text (dashed) 16844 16536 308 2%

2001375 ET POLICY Credit Card Number Detected in Clear (16 digit spaced) 36100 23396 12704 35%

2001376 ET POLICY Credit Card Number Detected in Clear (16 digit dashed) 36101

2001377 ET POLICY Credit Card Number Detected in Clear (16 digit) 36400 23571 12829 35%

2001378 ET POLICY Credit Card Number Detected in Clear (15 digit) 36411 23578 12833 35%

2001379 ET POLICY Credit Card Number Detected in Clear (15 digit spaced) 36414

2001381 ET POLICY Credit Card Number Detected in Clear (14 digit) 36414 23579 12835 35%

2001384 ET POLICY SSN Detected in Clear Text (spaced) 36429 23581 12848 35%

2001402 ET POLICY ZIPPED DOC in transit 41323 27116 14207 34%

2001403 ET POLICY ZIPPED XLS in transit 45286 29724 15562 34%

2001404 ET POLICY ZIPPED EXE in transit 45369 29800 15569 34%

2001405 ET POLICY ZIPPED PPT in transit 48915 32161 16754 34%

2001978 ET POLICY SSH session in progress on Expected Port 49645 32805 16840 34%

2001980 ET POLICY SSH Client Banner Detected on Unusual Port 49646

2002658 ET POLICY EIN in the clear (US-IRS Employer ID Number) 49655 32813 16842 34%

2002752 ET POLICY Reserved Internal IP Traffic 49656 32814 16842 34%

2003195 ET POLICY Unusual number of DNS No Such Name Responses 49726 32879 16847 34%

2003292 ET WORM Allaple ICMP Sweep Ping Outbound 49731

2003864 ET POLICY Outbound SMTP on port 587 49733 32881 16852 34%

2008581 ET P2P BitTorrent DHT ping request 49734 32882 16852 34%

2009702 ET POLICY DNS Update From External net 49981 33120 16861 34%

2011368 ET SCAN TCP Traffic (ET SCAN Malformed Packet SYN RST) 50030 33164 16866 34%

2011540 ET POLICY OpenSSL Demo CA - Internet Widgits Pty (O) 50031 33166 16865 34%

2100382 GPL ICMP_INFO PING Windows 50836 33957 16879 33%

2100384 GPL ICMP_INFO PING 63141 45942 17199 27%

2100408 GPL ICMP_INFO Echo Reply 63144 45944 17200 27%

2100449 GPL MISC Time-To-Live Exceeded in Transit 63151 45950 17201 27%

2100466 GPL ICMP L3retriever Ping 63261 46060 17201 27%

2100480 GPL ICMP_INFO PING speedera 74651 57143 17508 23%

2100485 GPL ICMP_INFO Destination Unreachable Communication Administratively Prohibited 119536 100348 19188 16%

2100486 GPL ICMP_INFO Destination Unreachable Communication with Destination Host is Administratively Prohibited 120045 100832 19213 16%

2100487 GPL ICMP_INFO Destination Unreachable Communication with Destination Network is Administratively Prohibited 120045 100832 19213 16%

2101620 GPL POLICY TRAFFIC Non-Standard IP protocol 101343

100000158 GPL VOIP SIP INVITE message flooding 101344

Comparison of Snort and Suricata Alerts 07/27

 42

ANNEX 2 EXAMPLE PYTBULL REPORTS FOR SURICATA AND

 SNORT

Category: Client Side Attacks

Test 4: Corrupt PDF File (CVE2009-4324)

Snort False Negative: Both alerts generated by Snort in this example are due to

the Pytbull process of obtaining the alert data from the intrusion-detection system.

Neither alert relates to the exploited PDF file that was transmitted in Test 4.

Suricata True Positive: Suricata generated an alarm based on the PDF file

containing JavaScript.

Category: Test Rules

Test #6: Simple LFI Attack

 43

Snort True Positive: Snort generated an alert based on the ‘/etc/passwd’ string

passed through an HTTP command.

Suricata True Positive: Suricata generated an alert based on the ‘/etc/passwd’

string passed through an HTTP command.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

APPENDIX B

ANNEX 1 EMERGING THREATS (ET) AND VULNERABILITY RESEARCH

TEAM (VRT) RULE CATEGORIES USED IN EXPERIMENTS.

 - emerging-all.rules - policy.rules

 - attack-responses.rules - pop2.rules

 - backdoor.rules - pop3.rules

 - bad-traffic.rules - rpc.rules

 - blacklist.rules - rservices.rules

 - botnet-cnc.rules - scada.rules

 - chat.rules - scan.rules

 - content-replace.rules - shellcode.rules

 - ddos.rules - smtp.rules

 - dns.rules - snmp.rules

 - dos.rules - specific-threats.rules

 - exploit.rules - spyware-put.rules

 - finger.rules - sql.rules

 - ftp.rules - telnet.rules

 - icmp-info.rules - tftp.rules

 - icmp.rules - virus.rules

 - imap.rules - voip.rules

 - info.rules - web-activex.rules

 - misc.rules - web-attacks.rules

 - multimedia.rules - web-cgi.rules

 - mysql.rules - web-client.rules

 - netbios.rules - web-coldfusion.rules

 - nntp.rules - web-frontpage.rules

 - oracle.rules - web-iis.rules

 - other-ids.rules - web-misc.rules

 - p2p.rules - web-php.rules

 - phishing-spam.rules - x11.rules

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

LIST OF REFERENCES

B, T. (2010). Snort. Message posted to www.digitalboundary.net/wp/?p=90

Ben-Kiki, O., Evans, C. & dot Net, I. (2010). YAML. Retrieved 8/19/2011, from yaml.org

CPU limit. (2011). Retrieved 8/18/2011 from cpulimit.sourceforge.net

Damaye, S. (2011a). Pytbull. Retrieved 8/19/2011, from pytbull.sourceforge.net

Damaye, S. (2011b). Suricata-vs-snort. Message posted to

www.aldeid.com/wiki/Suricata-vs-snort

Day, D., & Burns, B. (2011). A performance analysis of snort and suricata network

intrusion detection and prevention engines. IDCS 2011, the Fifth International

Conference on Digital Society, Gosier, Guadeloupe, France. 187–192.

Emerging Threats. (2011). Emerging threat. Retrieved 8/19, 2011, from

www.emergingthreats.net

Fossl, M. (2011). Symantec Internet security threat ReportTrends for 2010.Symantec

Corp.

García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009).

Anomaly-based network intrusion detection: Techniques, systems and challenges.

Computers & Security, 28(1-2), 18-28. doi:DOI: 10.1016/j.cose.2008.08.003.

Haferman, J. (2011). NPS high performance computing center. Retrieved 8/19/2011,

from www.nps.edu/Technology/HPC/Images/HPC_brochure0209.pdf

Jonkman, M. (2009). Suricata IDS available for download. Message posted to

marc.info/?l=snort-users&m=126229065928554&w=2.

Kuipers, D., & Fabro, M. (2006). Control system cyber security: Defense in depth

strategies. No. INL/EXT-06-11478).

Kumar, G., & Panda, S. N. (2011). Spectrum of effective security trust architecture to

manage interception of packet transmission in value added networks. The Global

Journal of Computer Science and Technology, 11(4), 7377

Leblond, E. (2011). Optimizing Linux on multicore CPUs. Message posted to

home.regit.org/2011/01/optimizing-suricata-on-a-multicore-cpu

Lococo, M. (2011). Capacity planning for snort. Message posted to

mikelococo.com/2011/08/snort-capacity-planning

Moore, G. (1965). Cramming more components on to integrated circuits. Electronics,

38(8).

Nielsen, J. (2010). Nielsen's law of Internet bandwidth. Retrieved 8/18/2011, from

www.useit.com/alertbox/980405.html

Open Information Security Foundation (OISF). (2010). Suricata IDS (1.1 Beta2 ed.).

 48

Open Information Security Foundation (OISF). (2011a). Open information security

foundation (OISF). Retrieved 5/4/2011, from www.openinfosecfoundation.org

Open Information Security Foundation (OISF). (2011b). Suricata installation notes (1.1

Beta 2 ed.) Retrieved from www.openinfosecfoundation.org/doc/INSTALL.txt

Open Information Security Foundation (OISF). (2011c). Suricata - multi threading.

Retrieved 5/6/2011, from redmine.openinfosecfoundation.org/projects/suricata/

wiki/Multi_Threading

Ristic, I. (2009). HTTP parser for intrusion detection and web application firewalls.

Retrieved 8/18/2011, from blog.ivanristic.com/2009/11/http-parser-for-intrusion-

detection-and-web-application-firewalls.html

Roesch, M. (2005). The story of snort: Past, present and future Retrieved 8/18/2011,

from www.net-security.org/article.php?id=860

Roesch, M. (2010). Single threaded data processing pipelines and the intel archietecture,

or no performance for you, now go home. Message posted to vrt-

blog.snort.org/2010/06/single-threaded-data-processing.html

Shimel, A. (2010). Is this town big enough for two IDS? Message posted to

www.networkworld.com/community/node/67435

SourceFire. (2011). Snort IDS. Retrieved 8/19/2011, from www.snort.org

Tenhunen, T. (2008). Implementing an intrusion detection system in the MYSEA

architecture. (Master of Computer Science, Naval Postgraduate School).

Watchinski, M. (2010). Unusual snort performance stats. Message posted to

comments.gmane.org/gmane.comp.security.ids.snort.general/30527

Weber, T. (2001). Network intrusion detection - keeping up with increasing information

volume. SANS Institute.

 49

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School

Monterey, California

3. Neil Rowe

Naval Postgraduate School

Monterey, California

4. Rex Buddenberg

Naval Postgraduate School

Monterey, California

5. D. C. Boger

Naval Postgraduate School

Monterey, California

